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Abstract— In this paper the effect of slope of the fluid bed with
respect to various other fluid parameters such as visco-elasticity,
porosity, frequency of excitation and time on the flow rate has
been studied in detail. It is noticed that, the flow rate increases as
the inclination of the fluid bed increases. Further, as the visco-
elasticity of the fluid bed increases, the flow rate decreases. Also,
it is seen that, as the porosity increases, the flow rate increases. In
addition to the above, as the frequency of excitation of the fluid
bed is increased, there is a decrease trend in the flow rate. When
the plate is held horizontal, practically the flow rate is found to
be absent. It is also noticed that, the effect of frequency of
excitation is just similar to that of the effect of time parameter
throughout the investigation, of course with different flow rates.
The effects of all the above parameters on the flow rate have been
presented graphically.
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. INTRODUCTION

Flow through porous media has been the subject of
considerable research activity in recent years because of its
several important applications notably in the flow of oil
through porous rock, the extraction of geothermal energy from
the deep interior of the earth to the shallow layers, the
evaluation of the capability of heat removal from particulate
nuclear fuel debris that may result from a hypothetical
accident in a nuclear reactor, the filtration of solids from
liquids, flow of liquids through ion-exchange beds, drug
permeation through human skin, chemical reactor for
economical separation or purification of mixtures and so on.

In many chemical processing industries, slurry adheres to
the reactor vessels and gets consolidated. As a result of this,
the chemical compounds within the reactor vessel percolates
through the boundaries causing loss of production and then
consuming more reaction time. In view of such technological
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and industrial importance wherein the heat and mass transfer
takes place in the chemical industry, the problem by
considering the permeability of the bounding surfaces in the
reactors attracted the attention of several investigators.

An important application is in the petroleum industry,
where crude oil is tapped from natural underground reservoirs
in which oil is entrapped. Since the flow behavior of fluids in
petroleum reservoir rock depends, to a large extent, on the
properties of the rock, techniques that yield new or additional
information on the characteristics of the rock would enhance
the performance of the petroleum reservoirs. A related
biomechanical application is the flow of fluids in the lungs,
blood vessels, arteries and so on, where the fluid is bounded
by two layers which are held together by a set of fairly
regularly spaced tissues.

Viscous fluid flow over wavy wall had attracted the
attention of relatively few researchers although the analysis of
such flows finds application in different areas, such as
transpiration cooling of re-entry vehicles and rocket boosters,
cross hatching on ablative surfaces and film vaporization in
combustion chambers. Especially, where the heat and mass
transfer takes place in the chemical processing industry, the
problem by considering the permeability of the bounding
surface in the reactors assumes greater significance.

Many materials such as drilling muds, clay coatings and
other suspensions, certain oils and greases, polymer melts,
elastomers and many emulsions have been treated as non-
Newtonian fluids. Because of the difficulty to suggest a single
model, which exhibits all properties of non-Newtonian fluids,
they cannot be described simply as Newtonian fluids and there
has been much confusion over the classification of non-
Newtonian fluids. However, non-Newtonian fluids may be
classified as (i) fluids for which the shear stress depends only
on the rate of shear; (ii) fluids for which the relation between
shear stress and shear rate depends on time; (iii) the visco-
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elastic fluids, which possess both elastic and viscous
properties.

Because of the great diversity in the physical structure of
non-Newtonian fluids, it is not possible to recommend a single
constitutive equation as the equation for use in the cases
described in (i)—(iii). For this reason, many non-Newtonian
models or constitutive equations have been proposed and most
of them are empirical or semi-empirical. For more general
three-dimensional representation, the method of continuum
mechanics is needed [1]. Although many constitutive
equations have been suggested, many questions are still
unsolved. Some of the continuum models do not give
satisfactory results in accordance with the available
experimental data. For this reason, in many practical
applications, empirical or semi-empirical equations have been
used.

It has been shown that, for many types of problems in
which the flow is slow enough in the visco-elastic sense, the
results given by Olroyd’s constitutive equations will be
substantially equal to those of the second or third-order
Rivlin—Ericksen constitutive equations [2]. Thus, if this is the
sense in which the solutions to which problems are to be
interpreted, it would seem reasonable to use the second- or
third-order constitutive equations in carrying out the
calculations. This is particularly so in view of the fact that, the
calculation will generally be still simpler. For this reason, in
this paper, the second-order fluid model is used. The
constitutive equation for the fluids of second grade (or second-
order fluids) is a linear relationship between the stress, the first
Rivlin—Ericksen tensor, its square and the second Rivlin-
Ericksen tensor [1]. The constitutive equation has three
coefficients. There are some restrictions on these coefficients
due to the Clausius—Duhem inequality and the assumption that
the Helmholtz free energy is a minimum in equilibrium. A
comprehensive discussion on the restrictions for these
coefficients has been given in [3] and [4]. One of these
coefficients represents the viscosity coefficient in a way
similar to that of a Newtonian fluid and the constitutive
equation reduces to that of a Newtonian fluid in the absence of
the other two coefficients. The restrictions on these two
coefficients have not been confirmed by experiments and the
sign of these material moduli is the subject of much
controversy [5].

The equation of motion of incompressible second grade
fluids, in general, is of higher order than the Navier—Stokes
equation. The Navier—Stokes equation is a second-order
partial differential equation, but the equation of motion of a
second-order fluid is a third-order partial differential equation.
A marked difference between the case of the Navier-Stokes
theory and that for fluids of second grade is that, ignoring the
nonlinearity in the Navier—Stokes equation does not lower the
order of the equation, however, ignoring the higher order non-
linearities in the case of the second grade fluid, reduces the
order of the equation.

In view of several industrial and technological
importances, Pattabhi Ramacharyulu [6] studied the problem
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of the exact solutions of two dimensional flows of a second
order incompressible fluid by considering the rigid
boundaries. Later, Lekoudis et.al [7] presented a linear
analysis of the compressible boundary layer flow over a wall.
Subsequently, Shankar and Sinha [8] studied the problem of
Rayleigh for wavy wall. The effect of small amplitude wall
waviness upon the stability of the laminar boundary layer had
been studied by Lessen and Gangwani [9]. Ramana Murthy
et.al [10] discussed the flow of an elastico viscous fluid past
an infinite plate with variable suction wherein the effects of
various flow entities have been discussed. Further, the
problem of free convective heat transfer in a viscous
incompressible fluid confined between vertical wavy wall and
a vertical flat wall was examined by Vajravelu and Shastri
[11] and thereafter by Das and Ahmed [12]. The free
convective flow of a viscous incompressible fluid in porous
medium between two long vertical wavy walls was
investigated by Patidar and Purohit [13]. Rajeev Taneja and
Jain [14] had examined the problem of MHD flow with slip
effects and temperature dependent heat source in a viscous
incompressible fluid confined between a long vertical wall and
a parallel flat plate. Recently, Ramana Murthy et.al [15]
studied on the class of exact solutions of an incompressible
second order fluid flow by creating sinusoidal disturbances,
where different situations and effects have been examined.

In all of the above situations, the investigators main aim
was to examine the parameters that influence the velocity
component. Not much of attention has been paid on the flow
rate and the factors influencing it. Therefore, an attempt has
been made to study the influence of various critical parameters
on the flow rate. In all above investigations, the fluid under
consideration was viscous incompressible fluid of second order
type. The aim of the present analysis is to examine the nature
of the flow rate by considering an additional property namely
elastico viscosity of the fluid and also by creating sinusoidal
disturbance at the bottom while the fluid is resting on the plate.
This paper is aimed to investigate flow rate of the fluid by also
taking into account the porosity factor of the bounding surface.
The results are expressed in terms of a non-dimensional
parameter K, which depends on the non-Newtonian coefficient
@5 and the frequency of excitation &. It is noticed that, the flow
properties are identical with those of in the Newtonian case
(& = o).

Since the stress at any point in the fluid is an expression of
the mutual reaction of adjacent points of fluid near that point,
it is natural to consider the connection between the stress and
the local properties of the fluid. In the fluid at rest, the stress is
determined wholly by the static pressure. In the case of a fluid
in relative motion, the connection between the stress and local
properties of the fluid is more complicated. However, some
modifications may be made such as allowing the stress to
depend only on the instantaneous distribution of fluid velocity
in the neighborhood of the element.

FORMULATION OF THE PROBLEM
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Because of the difficulty to suggest a single model which
exhibits all properties of non-Newtonian fluids, they cannot
simply be described as a Newtonian fluid. For this reason,
many non-Newtonian models or constitutive equations have
been proposed and most of them are empirical or semi-
empirical. For more general three-dimensional representation,
the method of continuum mechanics is needed. One of the
most popular models for non-Newtonian fluids is the model
that is called the second-order fluid (or fluid of second grade).
The constitutive assumption for the fluid of second grade is in
the following form [1].

Sy =—PI+0:EY + 0,EF + 935832 Q)

where ES =U;; + Uy, )
2
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where ©,,@,and @, are material moduli.

The Clausius-Duhem inequality and the assumption that
the Helmholtz free energy is minimum in equilibrium provide
the following restrictions [3].

@1:—}019220;92+@3:0 (4)

The condition @, +®; =0 is a consequence of the
Clausius—-Duhem inequality and the condition @, = 0 follows
the requirement that the Helmholtz free energy is a minimum
in equilibrium. A comprehensive discussion on the restrictions
for @,,0, and ®; can be found in the work by Dunn and
Rajagopal [4]. The sign of the material moduli @; and ©@,is the
subject of much controversy [5]. In the experiments on several
non-Newtonian fluids, the experimentalists have not
confirmed these restrictions on @, and ©@.
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Figure 1: Geometry of the fluid over porous bed

In general, the equations (in the dimensional form) of
motions in the X, ¥ and Z directions and when the bounding
surface is porous are given by:
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Introducing the following non-dimensional variables as:
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where T is the (dimensional) time variable, g is the mass
density and L is a characteristic length. We consider a class of
plane flows given by the velocity components

u; =uly,t)and u, =0while u; =0

in the directions of rectangular Cartesian coordinates x and
y. The velocity field given by Equation (8) identically satisfies
the incompressibility condition.

The stresses in the non-dimensional form are:

Suw =2+ 8. (3) ©
Syy = —p+ @ +26) (Z;f)z (10)
S =(55) +8 55 G) (11)

In view of the above, the equations of motion will be
transformed to

du or  %u 8 (5%u
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b

Equation (12) shows that — must be independent of

space variables and hence may be Jtkaken as £(t). Equation (13)
now yields

p=po(t) — {(Ox+ (5, + zﬁ)aiy (E%)Z

Considering £{t) =10, the flow characterized by the
velocity is given by:
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du

(15)

where K is the non-dimensional porosity constant. It may
be noted that, the presence of f changes the order of
differential from two to three.
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The oscillations of a classical viscous liquid on the upper
half of the plane y = 0 with the bottom oscillating with a
velocity ae*@? then

SOLUTION OF THE PROBLEM

u(0,t) = ae'?t while u(ee,t) = 0 (16)

Assuming the trial solution as
u(y,t) = ae™ f(y), then () = p*f(¥)
Where

(17)
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When expressed in the polar form
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Also the conditions satisfied are:
f0)=1,f(o)=1
This yields the solution

(1= cos{B-2)esin(Z-5)))

(20)

u(y,t) = ae
The flow is thus represented by standing transverse wave
with its amplitude rapidly diminishing with increasing
distance from the plane. The flow rate F is given by
1 1
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IV. RESULTS AND DISCUSSIONS

Analysis for the flow rate with respect to the flow entities
present in the analytical expression has been illustrated in
Figure 2. It is noticed that, as the inclination of the fluid bed
increases, the flow rate also increases. Further, for a constant
angle of inclination, as the visco-elasticity of the fluid medium
increases, the flow rate decreases. This phenomena is purely
due to the fact that, the strong intra molecular forces that
exists in the fluid medium. An interesting phenomenon that
can be observed is that, when the plate is held horizontal and
the visco-elasticity of the fluid is zero, the net flow rate is also
found to be absent.
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Figure 2: Effect of visco-elasticity on the flow rate

Figure 3 illustrates the effect of angle of inclination of the
fluid bed on the flow rate. As the fluid bed slope is increased,
in general the flow rate also increases. Further, for a constant
angle of inclination, as the porosity of the fluid bed is
increases, the flow rate increases. Such an observation is not
uncommon, but, anticipated due to the seepage of the fluid
through the pores of the bed.

25

—+—K=-0.05
—e—K=0.10
—*—K=0.15

c=15t=11,p=0

Flow Rete (F)

Figure 3: Effect of porosity on the flow rate

The effect of frequency of excitation on the flow rate is shown
in Figure 4. It is noticed that, when the plate is inclined and
held constant, as the frequency of excitation increases, the
flow rate decreases. Also, in the absence of angle of
inclination, naturally, the flow rate is absent.
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Figure 4: Effect of frequency of excitation on the flow rate

Figure 5 exhibits the effect of time on the flow rate. When
the angle of inclination of the plate is held constant, and as
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time increases, the flow rate decreases, and a reverse trend is
observed even when time increases. Further, when the angle of
inclination is zero, irrespective of the time parameter, the flow
rate is zero which is in conformation with the natural laws
fluid mechanics and supports earlier observations.

0.05 T T T T

K=15,0=11.p=10

—+—t=0.05

—e—1t=0.10
004

003

0.02

0.01

Flow Rate (F)

001

£0.02

-0.03

20 G0

30
Angle of Inclination (a)

Figure5: Effect of time on the flow rate

V. CONCLUSIONS

In case of visco-elastic fluid flow over an inclined porous
plate, there is a significant effect of visco-elasticity, porosity of
the bounding surface and the angle of inclination on the flow
rate. It is observed that, the flow rate increases as the slope of
the fluid bed is increased. Also, it is noticed that, as the visco-
elasticity increases, the flow rate decreases. Further, as the
porosity of the fluid bed increases, the flow rate is found to be
linear and proportional. Further, an interesting feature that is
observed is, as the frequency of excitation of the plate is
increased, the flow rate decreases. Also, from the graphical
representation, it is noticed that, the effect of frequency of
excitation is just similar to that of the effect of time parameter
throughout the investigation, of course with different flow
rates.

REFERENCES
[1]

Rajagopal, K. R and Kaloni, P. L: Continuum Mechanics and its
Applications, Hemisphere Press, Washington, DC, 1989.

Walters, K: Relation between Coleman-Nall, Rivlin-Ericksen, Green—
Rivlin and Oldroyd fluids, ZAMP 21 (1970) 592-600.

Dunn, J. E and Fosdick, R. L: Thermodynamics, stability and
boundedness of fluids of complexity 2 and fluids of second grade, Arch.
Rational Mech. Anal. 56 (1974) 191-252.

Dunn, J. E and Rajagopal, K. R: Fluids of differential type—critical
review and thermodynamic analysis, Int. J. Eng. Sci. 33 (1995) 689-729.
Rajagopal, K. R: Flow of visco elastic fluids between rotating discs,
Theor. Comput. Fluid Dyn. 3 (1992) 185-206.

Pattabhi Ramacharyulu, N. Ch: Exact solutions of two dimensional
flows of second order fluid. App. Sc. Res., Sec - A, 15 (1964) 41 - 50.
Lekoudis, S. G, Nayef, A. H and Saric: Compressible boundary layers
over wavy walls. Physics of fluids, 19 (1976) 514 - 519.

Shankar, P .N and Shina, U .N: The Rayeigh problem for wavy wall. J.
fluid Mech., 77 (1976) 243 - 256.

[2]
(3]

(4]
(5]
6]
[71
(8]

23

Vol. 4, Issue. 3, June’ 2016; ISSN: 2357 — 2787

[9] Lessen, M and Gangwani, S .T: Effects of small amplitude wall
waviness upon the stability of the laminar boundary layer. Physics of

fluids, 19 (1976) 510 - 513.

Raman Murthy, Ch.V, Kulkarni, S. B and Singh, B. B: Flow of an
elastico viscous fluid past an infinite plate with variable suction. Def. Sc.
J., Vol. 57, No. 4, July (2007) 549 — 556.

Vajravelu, K and Shastri, K. S: Free convective heat transfer in a viscous
incompressible fluid confined between along vertical wavy wall and a
parallel flat plate. J. Fluid Mech., 86 (1978) 365 - 383.

Das, U. N and Ahmed, N: Free convective MHD flow and heat transfer
in a viscous incompressible fluid confined between a long vertical wavy
wall and a parallel flat wall. Indian J. Pure Appl. Math., 23 (1992) 295 -
304.

Patidar, R. P and Purohit, G. N: Free convection flow of a viscous
incompressible fluid in a porous medium between two long vertical
wavy walls. Indian J. Math., 40 (1998) 76 - 86.

Taneja, R and Jain, N. C: MHD flow with slips effects and temperature
dependent heat source in a viscous incompressible fluid confined
between a long vertical wavy wall and a parallel flat wall. Def. Sc. J.,
Jan (2004) 21 - 29.

Ramana Murthy, Ch. V, Kulkarni, S. B: On the class of exact solutions
of an incompressible second order fluid flow by creating sinusoidal
disturbances. Def. Sc. J.,Vol. 56, No. 5, Nov(2006) 733 - 741.

[10]
[11]

[12]

[13]

[14]

[15]

NOMENCLATURE
: Acceleration component in i" direction

: Acceleration tensor

a : Non dimensional acceleration in i direction
Ei(jl) : Strain tensor in the dimensional form

ei(jl) : Strain tensor in the non-dimensional form

F : Non dimensional flow rate

Fyx,Fy,Fz: External forces applied along X,Y and Z directions
: Non dimensional permeability of the porous bed

: Dimensionalised porosity factory

: Characteristic length

: Indeterminate hydrostatic pressure
: Non dimensional indeterminate pressure

: Polar coordinate

»wSocTUoUr ~ X

: Dimensional stress tensor

i

: Non dimensional stress tensor

: Dimensional time parameter
: Non dimensional time parameter

: Dimensional velocity component in i" direction

: Dimensional velocity tensor

: Non dimensional velocity

cccc~d

: Non-dimensional velocity component in i'" direction

>
<

: Co-ordinate axes (dimensional form)

: Co-ordinate axes (non-dimensional form)

x
=<
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Greek Symbols

(04 -Angle of inclination with respect to horizontal line
B : Visco elasticity parameter

g : Polar coordinate

& : Coefficient of viscosity

&, : Coefficient of elastico viscosity
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u
v

o

Jol
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: Coefficient of cross viscosity
: Viscosity of the fluid

: Non dimensionalised cross viscosity parameter

: Density of the fluid
: Frequency of excitation



