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Abstract— In this paper the effect of slope of the fluid bed with 
respect to various other fluid parameters such as visco-elasticity, 
porosity, frequency of excitation and time on the flow rate has 
been studied in detail. It is noticed that, the flow rate increases as 
the inclination of the fluid bed increases. Further, as the visco-
elasticity of the fluid bed increases, the flow rate decreases. Also, 
it is seen that, as the porosity increases, the flow rate increases. In 
addition to the above, as the frequency of excitation of the fluid 
bed is increased, there is a decrease trend in the flow rate. When 
the plate is held horizontal, practically the flow rate is found to 
be absent. It is also noticed that, the effect of frequency of 
excitation is just similar to that of the effect of time parameter 
throughout the investigation, of course with different flow rates.  
The effects of all the above parameters on the flow rate have been 
presented graphically. 
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I. INTRODUCTION 
Flow through porous media has been the subject of 

considerable research activity in recent years because of its 
several important applications notably in the flow of oil 
through porous rock, the extraction of geothermal energy from 
the deep interior of the earth to the shallow layers, the 
evaluation of the capability of heat removal from particulate 
nuclear fuel debris that may result from a hypothetical 
accident in a nuclear reactor, the filtration of solids from 
liquids, flow of liquids through ion-exchange beds, drug 
permeation through human skin, chemical reactor for 
economical separation or purification of mixtures and so on. 

In many chemical processing industries, slurry adheres to 
the reactor vessels and gets consolidated. As a result of this, 
the chemical compounds within the reactor vessel percolates 
through the boundaries causing loss of production and then 
consuming more reaction time. In view of such technological 

and industrial importance wherein the heat and mass transfer 
takes place in the chemical industry, the problem by 
considering the permeability of the bounding surfaces in the 
reactors attracted the attention of several investigators.  

An important application is in the petroleum industry, 
where crude oil is tapped from natural underground reservoirs 
in which oil is entrapped. Since the flow behavior of fluids in 
petroleum reservoir rock depends, to a large extent, on the 
properties of the rock, techniques that yield new or additional 
information on the characteristics of the rock would enhance 
the performance of the petroleum reservoirs. A related 
biomechanical application is the flow of fluids in the lungs, 
blood vessels, arteries and so on, where the fluid is bounded 
by two layers which are held together by a set of fairly 
regularly spaced tissues. 

Viscous fluid flow over wavy wall had attracted the 
attention of relatively few researchers although the analysis of 
such flows finds application in different areas, such as 
transpiration cooling of re-entry vehicles and rocket boosters, 
cross hatching on ablative surfaces and film vaporization in 
combustion chambers. Especially, where the heat and mass 
transfer takes place in the chemical processing industry, the 
problem by considering the permeability of the bounding 
surface in the reactors assumes greater significance. 

Many materials such as drilling muds, clay coatings and 
other suspensions, certain oils and greases, polymer melts, 
elastomers and many emulsions have been treated as non-
Newtonian fluids. Because of the difficulty to suggest a single 
model, which exhibits all properties of non-Newtonian fluids, 
they cannot be described simply as Newtonian fluids and there 
has been much confusion over the classification of non-
Newtonian fluids. However, non-Newtonian fluids may be 
classified as (i) fluids for which the shear stress depends only 
on the rate of shear; (ii) fluids for which the relation between 
shear stress and shear rate depends on time; (iii) the visco-
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elastic fluids, which possess both elastic and viscous 
properties. 

Because of the great diversity in the physical structure of 
non-Newtonian fluids, it is not possible to recommend a single 
constitutive equation as the equation for use in the cases 
described in (i)—(iii). For this reason, many non-Newtonian 
models or constitutive equations have been proposed and most 
of them are empirical or semi-empirical. For more general 
three-dimensional representation, the method of continuum 
mechanics is needed [1]. Although many constitutive 
equations have been suggested, many questions are still 
unsolved. Some of the continuum models do not give 
satisfactory results in accordance with the available 
experimental data. For this reason, in many practical 
applications, empirical or semi-empirical equations have been 
used. 

It has been shown that, for many types of problems in 
which the flow is slow enough in the visco-elastic sense, the 
results given by Olroyd’s constitutive equations will be 
substantially equal to those of the second or third-order 
Rivlin–Ericksen constitutive equations [2]. Thus, if this is the 
sense in which the solutions to which problems are to be 
interpreted, it would seem reasonable to use the second- or 
third-order constitutive equations in carrying out the 
calculations. This is particularly so in view of the fact that, the 
calculation will generally be still simpler. For this reason, in 
this paper, the second-order fluid model is used. The 
constitutive equation for the fluids of second grade (or second-
order fluids) is a linear relationship between the stress, the first 
Rivlin–Ericksen tensor, its square and the second Rivlin–
Ericksen tensor [1]. The constitutive equation has three 
coefficients. There are some restrictions on these coefficients 
due to the Clausius–Duhem inequality and the assumption that 
the Helmholtz free energy is a minimum in equilibrium. A 
comprehensive discussion on the restrictions for these 
coefficients has been given in [3] and [4]. One of these 
coefficients represents the viscosity coefficient in a way 
similar to that of a Newtonian fluid and the constitutive 
equation reduces to that of a Newtonian fluid in the absence of 
the other two coefficients. The restrictions on these two 
coefficients have not been confirmed by experiments and the 
sign of these material moduli is the subject of much 
controversy [5].  

The equation of motion of incompressible second grade 
fluids, in general, is of higher order than the Navier–Stokes 
equation. The Navier–Stokes equation is a second-order 
partial differential equation, but the equation of motion of a 
second-order fluid is a third-order partial differential equation. 
A marked difference between the case of the Navier–Stokes 
theory and that for fluids of second grade is that, ignoring the 
nonlinearity in the Navier–Stokes equation does not lower the 
order of the equation, however, ignoring the higher order non-
linearities in the case of the second grade fluid, reduces the 
order of the equation. 

In view of several industrial and technological 
importances, Pattabhi Ramacharyulu [6] studied the problem 

of the exact solutions of two dimensional flows of a second 
order incompressible fluid by considering the rigid 
boundaries. Later, Lekoudis et.al [7] presented a linear 
analysis of the compressible boundary layer flow over a wall. 
Subsequently, Shankar and Sinha [8] studied the problem of 
Rayleigh for wavy wall. The effect of small amplitude wall 
waviness upon the stability of the laminar boundary layer had 
been studied by Lessen and Gangwani [9]. Ramana Murthy 
et.al [10] discussed the flow of an elastico viscous fluid past 
an infinite plate with variable suction wherein the effects of 
various flow entities have been discussed. Further, the 
problem of free convective heat transfer in a viscous 
incompressible fluid confined between vertical wavy wall and 
a vertical flat wall was examined by Vajravelu and Shastri 
[11] and thereafter by Das and Ahmed [12]. The free 
convective flow of a viscous incompressible fluid in porous 
medium between two long vertical wavy walls was 
investigated by Patidar and Purohit [13]. Rajeev Taneja and 
Jain [14] had examined the problem of MHD flow with slip 
effects and temperature dependent heat source in a viscous 
incompressible fluid confined between a long vertical wall and 
a parallel flat plate. Recently, Ramana Murthy et.al [15] 
studied on the class of exact solutions of an incompressible 
second order fluid flow by creating sinusoidal disturbances, 
where different situations and effects have been examined.  

In all of the above situations, the investigators main aim 
was to examine the parameters that influence the velocity 
component. Not much of attention has been paid on the flow 
rate and the factors influencing it. Therefore, an attempt has 
been made to study the influence of various critical parameters 
on the flow rate. In all above investigations, the fluid under 
consideration was viscous incompressible fluid of second order 
type. The aim of the present analysis is to examine the nature 
of the flow rate by considering an additional property namely 
elastico viscosity of the fluid and also by creating sinusoidal 
disturbance at the bottom while the fluid is resting on the plate. 
This paper is aimed to investigate flow rate of the fluid by also 
taking into account the porosity factor of the bounding surface. 
The results are expressed in terms of a non-dimensional 
parameter , which depends on the non-Newtonian coefficient 

and the frequency of excitation . It is noticed that, the flow 
properties are identical with those of in the Newtonian case 
( ). 

II. FORMULATION OF THE PROBLEM 
Since the stress at any point in the fluid is an expression of 

the mutual reaction of adjacent points of fluid near that point, 
it is natural to consider the connection between the stress and 
the local properties of the fluid. In the fluid at rest, the stress is 
determined wholly by the static pressure. In the case of a fluid 
in relative motion, the connection between the stress and local 
properties of the fluid is more complicated. However, some 
modifications may be made such as allowing the stress to 
depend only on the instantaneous distribution of fluid velocity 
in the neighborhood of the element.  
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Because of the difficulty to suggest a single model which 
exhibits all properties of non-Newtonian fluids, they cannot 
simply be described as a Newtonian fluid. For this reason, 
many non-Newtonian models or constitutive equations have 
been proposed and most of them are empirical or semi-
empirical. For more general three-dimensional representation, 
the method of continuum mechanics is needed. One of the 
most popular models for non-Newtonian fluids is the model 
that is called the second-order fluid (or fluid of second grade). 
The constitutive assumption for the fluid of second grade is in 
the following form [1]. 

           (1) 

where                         (2) 

and             (3) 

where and   are material moduli.  

The Clausius–Duhem inequality and the assumption that 
the Helmholtz free energy is minimum in equilibrium provide 
the following restrictions [3]. 

                (4) 

The condition  is a consequence of the 
Clausius–Duhem inequality and the condition  follows 
the requirement that the Helmholtz free energy is a minimum 
in equilibrium. A comprehensive discussion on the restrictions 
for and  can be found in the work by Dunn and 
Rajagopal [4]. The sign of the material moduli and is the 
subject of much controversy [5]. In the experiments on several 
non-Newtonian fluids, the experimentalists have not 
confirmed these restrictions on  and .  

 
Figure 1: Geometry of the fluid over porous bed 

In general, the equations (in the dimensional form) of 
motions in the and  directions and when the bounding 
surface is porous are given by: 

         (5) 

         (6) 

         (7) 

Introducing the following non-dimensional variables as: 

 

 

(8) 

where  is the (dimensional) time variable,  is the mass 
density and  is a characteristic length. We consider a class of 
plane flows given by the velocity components  

 and    while              

in the directions of rectangular Cartesian coordinates  and 
. The velocity field given by Equation (8) identically satisfies 

the incompressibility condition. 

The stresses in the non-dimensional form are: 

                      (9) 

       (10) 

           (11) 

In view of the above, the equations of motion will be 
transformed to  

          (12) 

and  

             (13) 

Equation (12) shows that   must be independent of 
space variables and hence may be taken as . Equation (13) 
now yields 

          (14) 

Considering , the flow characterized by the 
velocity is given by: 

            (15) 

where  is the non-dimensional porosity constant. It may 
be noted that, the presence of  changes the order of 
differential from two to three. 
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III. SOLUTION OF THE PROBLEM 
The oscillations of a classical viscous liquid on the upper 

half of the plane with the bottom oscillating with a 
velocity  then 

 while        (16) 

Assuming the trial solution as   

, then      (17) 

Where 

       (18)  

When expressed in the polar form  

      (19) 

where    

 

and   and  

Also the conditions satisfied are: 

                    (20) 

This yields the solution  

                           (21) 
The flow is thus represented by standing transverse wave 

with its amplitude rapidly diminishing with increasing 
distance from the plane. The flow rate  is given by 

 
where   

 

IV. RESULTS AND DISCUSSIONS 
Analysis for the flow rate with respect to the flow entities 

present in the analytical expression has been illustrated in 
Figure 2. It is noticed that, as the inclination of the fluid bed 
increases, the flow rate also increases. Further, for a constant 
angle of inclination, as the visco-elasticity of the fluid medium 
increases, the flow rate decreases. This phenomena is purely 
due to the fact that, the strong intra molecular forces that 
exists in the fluid medium. An interesting phenomenon that 
can be observed is that, when the plate is held horizontal and 
the visco-elasticity of the fluid is zero, the net flow rate is also 
found to be absent. 

 
Figure 2: Effect of visco-elasticity on the flow rate 

Figure 3 illustrates the effect of angle of inclination of the 
fluid bed on the flow rate. As the fluid bed slope is increased, 
in general the flow rate also increases. Further, for a constant 
angle of inclination, as the porosity of the fluid bed is 
increases, the flow rate increases. Such an observation is not 
uncommon, but, anticipated due to the seepage of the fluid 
through the pores of the bed. 

 
Figure 3: Effect of porosity on the flow rate 

The effect of frequency of excitation on the flow rate is shown 
in Figure 4. It is noticed that, when the plate is inclined and 
held constant, as the frequency of excitation increases, the 
flow rate decreases. Also, in the absence of angle of 
inclination, naturally, the flow rate is absent. 

 
Figure 4: Effect of frequency of excitation on the flow rate 

Figure 5 exhibits the effect of time on the flow rate. When 
the angle of inclination of the plate is held constant, and as 
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time increases, the flow rate decreases, and a reverse trend is 
observed even when time increases. Further, when the angle of 
inclination is zero, irrespective of the time parameter, the flow 
rate is zero which is in conformation with the natural laws 
fluid mechanics and supports earlier observations. 

 
Figure5: Effect of time on the flow rate 

V. CONCLUSIONS 
In case of visco-elastic fluid flow over an inclined porous 

plate, there is a significant effect of visco-elasticity, porosity of 
the bounding surface and the angle of inclination on the flow 
rate. It is observed that, the flow rate increases as the slope of 
the fluid bed is increased. Also, it is noticed that, as the visco-
elasticity increases, the flow rate decreases. Further, as the 
porosity of the fluid bed increases, the flow rate is found to be 
linear and proportional. Further, an interesting feature that is 
observed is, as the frequency of excitation of the plate is 
increased, the flow rate decreases. Also, from the graphical 
representation, it is noticed that, the effect of frequency of 
excitation is just similar to that of the effect of time parameter 
throughout the investigation, of course with different flow 
rates. 
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NOMENCLATURE 

iA  : Acceleration component in ith direction 

,i jA  : Acceleration tensor 

ia  : Non dimensional acceleration in ith direction 
 1
ijE  : Strain tensor in the dimensional form 
 1
ije  : Strain tensor in the non-dimensional form 

F  : Non dimensional flow rate 
FX,FY,FZ: External forces applied along X,Y and Z directions 
K  : Non dimensional permeability of the porous bed 
k  : Dimensionalised porosity factory 
L  : Characteristic length 
P  : Indeterminate hydrostatic pressure 
p  : Non dimensional indeterminate pressure 
r  : Polar coordinate 

ijS  : Dimensional stress tensor 

ijs  : Non dimensional stress tensor 

T  : Dimensional time parameter 
t  : Non dimensional time parameter 

iU  : Dimensional velocity component in ith direction 

,i jU  : Dimensional velocity tensor 
u  : Non dimensional velocity  

iu  : Non-dimensional velocity component in ith direction 

,i iX Y  : Co-ordinate axes (dimensional form) 

,i ix y  : Co-ordinate axes (non-dimensional form) 
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Greek Symbols 

  : Angle of inclination with respect to horizontal line 
  : Visco elasticity parameter 
  : Polar coordinate 

1  : Coefficient of viscosity 

2  : Coefficient of elastico viscosity 

3  : Coefficient of cross viscosity 
  : Viscosity of the fluid 

c  : Non dimensionalised cross viscosity parameter 
  : Density of the fluid 
   : Frequency of excitation 

 


